Flow patterns of lobate debris aprons and lineated valley fill north of Ismeniae Fossae, Mars: Evidence for extensive mid-latitude glaciation in the Late Amazonian

نویسندگان

  • David M.H. Baker
  • James W. Head
  • David R. Marchant
چکیده

A variety of Late Amazonian landforms on Mars have been attributed to the dynamics of ice-related processes. Evidence for large-scale, mid-latitude glacial episodes existing within the last 100 million to 1 billion years on Mars has been presented from analyses of lobate debris aprons (LDA) and lineated valley fill (LVF) in the northern and southern mid-latitudes. We test the glacial hypothesis for LDA and LVF along the dichotomy boundary in the northern mid-latitudes by examining the morphological characteristics of LDA and LVF surrounding two large plateaus, proximal massifs, and the dichotomy boundary escarpment north of Ismeniae Fossae (centered at 45.3 N and 39.2 E). Lineations and flow directions within LDA and LVF were mapped using images from the Context (CTX) camera, the Thermal Emission Imaging Spectrometer (THEMIS), and the High Resolution Stereo Camera (HRSC). Flow directions were then compared to topographic contours derived from the Mars Orbiter Laser Altimeter (MOLA) to determine the down-gradient components of LDA and LVF flow. Observations indicate that flow patterns emerge from numerous alcoves within the plateau walls, are integrated over distances of up to tens of kilometers, and have down-gradient flow directions. Smaller lobes confined within alcoves and superposed on the main LDA and LVF represent a later, less extensive glacial phase. Crater size-frequency distributions of LDA and LVF suggest a minimum (youngest) age of 100 Ma. The presence of ring-mold crater morphologies is suggestive that LDA and LVF are formed of near-surface ice-rich bodies. From these observations, we interpret LDA and LVF within our study region to result from formerly active debris-covered glacial flow, consistent with similar observations in the northern mid-latitudes of Mars. Glacial flow was likely initiated from the accumulation and compaction of snow and ice on plateaus and in alcoves within the plateau walls as volatiles were mobilized to the mid-latitudes during higher obliquity excursions. Together with similar analyses elsewhere along the dichotomy boundary, these observations suggest that multiple glacial episodes occurred in the Late Amazonian and that LDA and LVF represent significant reservoirs of non-polar ice sequestered below a surface lag for hundreds of millions of years. 2009 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for Amazonian northern mid-latitude regional glacial landsystems on Mars: Glacial flow models using GCM-driven climate results and comparisons to geological observations

0019-1035/$ see front matter 2011 Elsevier Inc. A doi:10.1016/j.icarus.2011.07.018 ⇑ Corresponding author. E-mail addresses: [email protected] (J.L. Fasto (J.W. Head). A fretted valley system on Mars located at the northern mid-latitude dichotomy boundary contains lineated valley fill (LVF) with extensive flow-like features interpreted to be glacial in origin. We have modeled this deposit using...

متن کامل

Ice-driven Degradation Styles in the Martian Mid-latitudes: Constraints from Lobate Debris Aprons, Lineated Valley Fill, and Small Flow Lobes

Introduction. The Martian mid-latitudes are regions of high scientific interest given recent descriptions of mantling deposits and glacial features believed to be relicts of recent ice ages on Mars [1-4]. Geomorphic indicators of ground ice have long been proposed to be concentrated in mid-latitude zones based on analyses of such features as lobate debris aprons, lineated valley fill, and conce...

متن کامل

Northern mid-latitude glaciation in the Late Amazonian period of Mars: Criteria for the recognition of debris-covered glacier and valley glacier landsystem deposits

a r t i c l e i n f o Keywords: Mars lobate debris aprons lineated valley fill debris-covered glaciers glaciation rock glaciers Lobate debris aprons (LDA) and lineated valley fill (LVF) have been known to characterize the mid-latitude regions of Mars since documented by Viking; their flow-like character suggested that deposition of ice in talus pile pore space caused lubrication and flow during...

متن کامل

Flow Patterns of Lobate Debris Aprons and Lineated Valley Fill North of Ismeniae

Introduction: Lobate debris aprons (LDA) and lineated valley fill (LVF) surrounding plateaus and isolated massifs have been documented in numerous locations in the northern mid-latitudes on Mars [1-8]. While there has been agreement that these features represent Amazonian-aged modification of the dichotomy boundary from ice-assisted debris flows [e.g., 9], the amount of ice and mode of origin o...

متن کامل

Lineated valley fill and lobate debris apron stratigraphy in Nilosyrtis Mensae, Mars: Evidence for phases of glacial modification of the dichotomy boundary

[1] The Nilosyrtis Mensae region is important among dichotomy boundary fretted terrain outcrops, as it provides evidence of overprinting of ancient landscapes by a suite of glacial features, providing a composite view of the variety of midlatitude glacial modification processes that can occur during recent Martian ice ages. On the basis of a series of criteria developed for the identification o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010